-16t^2+62t+24=0

Simple and best practice solution for -16t^2+62t+24=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16t^2+62t+24=0 equation:



-16t^2+62t+24=0
a = -16; b = 62; c = +24;
Δ = b2-4ac
Δ = 622-4·(-16)·24
Δ = 5380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5380}=\sqrt{4*1345}=\sqrt{4}*\sqrt{1345}=2\sqrt{1345}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62)-2\sqrt{1345}}{2*-16}=\frac{-62-2\sqrt{1345}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62)+2\sqrt{1345}}{2*-16}=\frac{-62+2\sqrt{1345}}{-32} $

See similar equations:

| 2x-40=110 | | 4x-20+4x-20=180 | | 21-2g=5 | | 5b2-45=0 | | 3x+1+1=20 | | 7(x+9)+8=71 | | 3x=73-1 | | 0=-2√3x=2 | | 6x+7+55=180 | | 5x2−35x=0 | | 4/5-x/20=2x+16/40 | | -3/4x+1/2=3/8 | | 8c+5c-12c=10 | | -16^2+62t+24=0 | | 12c-9=27 | | z^2=+7z=-10 | | 2+4v=2 | | 3x=17(x+1)/6 | | 3u+2u-2u+2=20 | | -9x+1=–x+17x=–8x=–2x=2x=8 | | –9x+1=–x+17x=–8x=–2x=2x=8 | | 3^(2x)-30*3^x+81=0 | | -26x=-13 | | -3x+1+10x=x+4x=x=x=12x=18 | | 16x+11+57=180 | | 32x-30*3x+81=0 | | 3.3x-10.46=6.7 | | 3x+2*3=13 | | 3x+2*3=14 | | y=3(1/4)^1 | | 2(x+5)=1/2x(x-4) | | 2/p2-2p=3/p2-p |

Equations solver categories